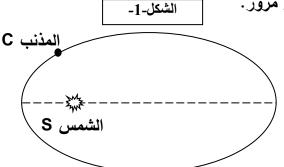


على المترشح أن يختار أحد الموضوعين: يحتوي الموضوع الأول على 4 صفحات (من الصفحة 01 إلى الصفحة 04)

التمرين الأول: (06 نقاط)



في سنة 1682م مَرّ مذنب بالمجموعة الشمسية فقام العالم أودموند هالي (Edmund Halley) بدراسة مساره معتمدا على قوانين نيوتن فتوصل إلى الاستنتاجات التالية:

- المذنب يرسم مسارا إهليلجيا حول الشمس، مشابها في حركته حركة الكواكب.
 - يخضع المذنب لقانون الجذب العام.
- المذنب يمر بانتظام بالمجموعة الشمسية كل 76 سنة (آخر مرور للمذنب تم سنة 1986م).

يهدف التمرين إلى دراسة بعض مميزات حركة مذنب هالي خلال آخر مرور.

المعطيات:

- $M_S = 2 \times 10^{30} \, kg$ كتلة الشمس
- $G = 6.67 \times 10^{-11} \, m^3 \, kg^{-1} \, s^{-2}$: ثابت التجاذب الكوني
- نعتبر أن كتلة الشمس موزعة بانتظام على حجمها ومذنب هالي نقطة مادية $\binom{C}{2}$ كتلتها $\binom{C}{2}$

ا. قانون الجذب العام:

1. أنقل الشكل. 1 على ورقة الإجابة، مبينا عليه:

نقطة الأوج، المحور الكبير، المحور الصغير، محرقي المدار الإهليليجي وموضحا عليه القانون الثاني لكبلر.

- 2. في المرجع الهيليومركزي نفرض أن المذنب خاضع لقوة الجذب المطبقة على المذنب من طرف الشمس.
- أعط العبارة الحرفية لشعاع قوة الجذب المطبقة من طرف الشمس على المذنب، ثم مثلها كيفيا على الشكل. 1 عند نقطتي الحضيض والأوج.

II. دراسة حركة مذنب هالي:

من أجل تسهيل الدراسة نفرض أن المذنب يرسم مدارا دائريا نصف قطره " r "حول الشمس.

- $a = \frac{G.M_s}{r^2}$: بتطبيق القانون الثاني لنيوتن على المذنب في المرجع المناسب، أثبت أن عبارة التسارع تكتب بالشكل:
 - 2. ذكّر بنص القانون الثالث لكبلر (قانون الأدوار).

- $\frac{T^2}{r^3} = \frac{4\pi^2}{G.M_s}$: باستعمال العبارة الحرفية للتسارع، اثبت أن القانون الثالث لكبار يكتب بالشكل: 3
 - $r = 2,69 \times 10^{12} \, m$ القيمة العددية لطول نصف المحور الكبير.
 - 1.4. أحسب زمن دورة واحدة لمذنب هالي، هل تتوافق مع ما ورد في النص؟
- 2.4. حدد عدد المرات التي شوهد فيها المذنب منذ أن اكتشفه هالي سنة 1682م حتى الآن (تاريخ 2024).
 - 5. هناك مذنب آخر يدور حول الشمس (مذنب بوب) دوره حوالي 4000 سنة.
- أثبت أن نصف المحور الكبير للمدار الاهليلجي لمذنب "بوب" أكبر من نصف المحور الكبير لمدار مذنب "هالي". التمرين الثاني: (07 نقاط)

للتحولات النووية عدة تطبيقات من بينها تأريخ الكائنات الحية بالكربون 14 المشع التي يعود تاريخها إلى آلاف السنين، وتوليد الطاقة الكهربائية كمصدر بديل عن تفاعلات احتراق النفط والغاز.

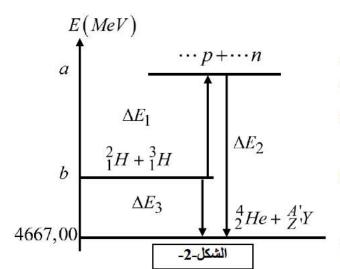

يهدف التمرين إلى تأريخ المسجد العتيق، ثم دراسة طاقوية لتفاعل الاندماج النووي.

 $1 MeV = 1.6 \times 10^{-13} J$ $1 u = 931.5 MeV / c^2$ المعطيات: – طاقة وحدة الكتلة الذرية:

 $N_A = 6,02 \times 10^{23} \ mol^{-1}$: زمن نصف عمر الكربون $t_{1/2} = 5730 \ ans$

$^{1}_{1}p$	$\frac{1}{0}n$	$^{2}_{1}H$	3_1H	النواة
1,0073	1,0087			(u) الكتلة الذرية
		1,11	2,82	$\binom{MeV}{n}$ طاقة الربط لكل نوية

- الجزء الأول:


صورة لبلدية القلعة والمسجد العتيق

في سنة 2024 قام فوج من التلاميذ المنتمين إلى النادي الثقافي برحلة إلى بلدية القلعة (ولاية غليزان) لزيارة الآثار البارزة بها من بينها المقبرة التركية والمسجد العتيق الذي تم تشييده سنة 1734م من طرف الأتراك (الباي بوشلاغم).

أخذ تلميذ قطعة خشبية من سقف المسجد، تحليل العينة بيّن أنها من شجر السنوبر الذي يتكون أساسا من الكربون ($\frac{12}{6}$ نظير مستقر و $\frac{14}{6}$ نظير مّشّع الذي يعتبر كآثار في العينة) وقيمة النشاط الاشعاعي 13,13dpm لكل 1g.

- 1. ما المقصود بـ: التأريخ. نظير مشع. آثار في العينة.
- $rac{A}{Z}X$ يتفكك الكربون $rac{14}{6}C$ وذلك عن طريق تحول نيترون إلى بروتون ينتج عنه نواة البنت $rac{A}{Z}$
- أكتب معادلة تفكك الكربون $^{14}_6$ ، مع تحديد نمط التفكك ورمز النواة البنت الناتجة من بين الأنوية التالية: $^{7}_{6}$ $^{8}_{6}$
 - تم قياس النشاط الاشعاعي لقطعة خشبية من السنوبر مقطوعة حديثا فكانت تساوي 13,6dpm لكل 18.
 - A(t) عبارة قانون تناقص النشاط الاشعاعي A(t)
 - 2.3. حدد التاريخ التقريبي الذي تم فيه بناء المسجد. وهل تتطابق مع ما كتب على باب المسجد.
 - 4. وُجد في مقبرة الأتراك رفاة كائن بشري يقدر عمره إلى حوالي مليون سنة.
 - هل يمكن تقدير عمره عن طريق التأريخ بالكربون 14؟ علل.

- الجزء الثاني:

في ظل السباق نحو تغيير مصادر الطاقة، يسعى العلماء إلى تحقيق تفاعل الاندماج النووي رغم الصعوبات التي كانت تصادفهم. يمثل الشكل. 2 مخطط الطاقة لتفاعل اندماج نوى الهيدروجين $\frac{3}{1}H$ و $\frac{3}{1}H$.

- عرف الاندماج النووي، ثم أكتب معادلة تفاعل النووي مبينا القوانين المستعملة في ذلك.
- د. حدد المدلول الفيزيائي لكل من (a) و (b)، ثم أحسب قيمة كل منهما.
- (J) استنتج الطاقة المحررة من هذا التفاعل مقدرة بالجول.
- (J) مقدرة بالجول (J) من أنوية الدوتيريوم (J) مقدرة بالجول (J)
- 5. قارن هذه الطاقة مع طاقة احتراق الكربون $(390 kJ.mol^{-1})$ ،ثم دون استنتاجك فيما يخص مصدر الطاقة الجديد. التمربن التجرببي: (07) نقاط)

يشارك حمض الأسكوربيك $(C_6H_8O_6)$ ، الذي يسمى عادة فيتامين C، في العديد من عمليات التمثيل الغذائي في جسم الإنسان حيث توصىي الوكالة الوطنية لسلامة الأغذية بالحد الأدنى من تناول الفيتامينات C ب C يومياً للبالغين.

تعد برتقالة الكليمنتين من بين الفواكه الغنية بحمض الأسكوربيك (سميت كذلك نسبة للأب كليمون (1829 – 1904) والذي كان مسؤولا عن الزراعة في ميتم مسرغين بالقرب من مدينة وهران)..

يهدف من هذا التمرين إلى دراسة خصائص حمض الأسكوربيك وتحديد عدد برتقالات الكليمونتين الضرورية لتلبية الاحتياجات اليومية للشخص البالغ من فيتامين C، ثم دراسة حركية تفاعله مع أزرق الميثيلين.

ا. بعض خواص حمض الاسكوربيك:

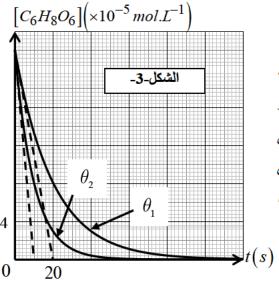
$$M(C_6H_8O_6) = 176 \text{ g.mol}^{-1}$$
 $\left(C_6H_8O_6(aq) / C_6H_7O_6^{-}(aq)\right)$: معطیات –

نقوم إذابة 1.0g من حمض الأسكوربيك التجاريّ في حوجلة عيارية سعتها 50mL ونكمل الحجم بالماء النقي حتى خط العيار. قيمة قياس pH المحلول الناتج هو 2.6. ينمذج التحول بين حمض الأسكوربيك والماء بمعادلة التفاعل التالية: $C_6H_8O_6(aq) + H_2O(l) = C_6H_7O_6^-(aq) + H_3O^+(aq)$

- . حدد كمية المادة الابتدائية n_0 من حمض الأسكوربيك المستعملة لتحضير المحلول.
- 2. أعط تعريف الحمض الضعيف حسب برونشتد، ثم بين أن حمض الأسكوربيك هو حمض ضعيف.
- 3. أعط عبارة ثابت الحموضة Ka للثنائية المرتبطة بحمض الأسكوربيك بدلالة التركيز المولي (eq) عند التوازن و C ، ثم بين أن قيمة DKa قريبة من DKa

اا. حمض الاسكوربيك في برتقالة الكليمونتين:

في حوجلة عيارية سعتها 250mL، قمنا بعصر برتقالة كليمونتين، ثم أكملنا الحجم بالماء النقي حتى خط العيار فتحصلنا على المحلول (S).


أخذنا V=50,0m من المحلول V=50,0m ووضعناه في إيرلن ماير، ثم أضفنا إليه $V_1=20,0m$ من محلول مائي $V_1=20,0m$ من ثنائي اليود $V_1=20,0m$ تائي اليود متواجد بوفرة). ينمذج التحول التام الحادث بين ثائي اليود وحمض الأسكوربيك بمعادلة التفاعل التالية:

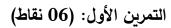
$$C_6H_8O_6(aq) + I_2(aq) = C_6H_6O_6(aq) + 2I^-(aq) + 2H^+(aq)\cdots(1)$$

قمنا بمعايرة ثنائي اليود المتبقي بواسطة محلول ثيوكبريتات الصوديوم $\left(2Na^+(aq)+S_2O_3^{2-}(aq)\right)$ تركيزه المولي $C_2=5,00\times 10^{-3}\ mol.L^{-1}$ يمكن $C_2=5,00\times 10^{-3}\ mol.L^{-1}$ نمذجة التحول الذي يحدث أثناء المعايرة بمعادلة التفاعل التالية:

$$I_2(aq) + 2S_2O_3^{2-}(aq) = 2I^{-}(aq) + S_4O_6^{2-}(aq)\cdots(2)$$

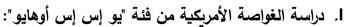
- $\cdot x_{ ext{max}}$ و V_1 ، C_1 و بدلالة اليود المتبقية بدلالة اليود المتبقية و بدلالة V_1 ، ثم أكتب عبارة $n_f(I_2)$ و مية مادة ثنائي اليود المتبقية بدلالة V_1 ، ثم أكتب عبارة v_1
 - $1.7 \times 10^{-5} \, mol$. بالاعتماد على تعريف نقطة التكافؤ، بين أن كمية مادة ثنائي اليود المتبقى تساوي
- 3. أحسب كتلة حمض الأسكوربيك الموجود في برتقالة الكليمونتين، ثم حدد عدد البرتقالات اللازمة لتلبية الاحتياجات اليومية من حمض الأسكوربيك لشخص بالغ. $[C_{c}H_{c}O_{c}](\times 10^{-5}\ mol\ I^{-1})$

ااا. دراسة حركية تفاعل حمض الاسكوربيك مع أزرق المشلن:


من أجل التعرف على الخاصية الإرجاعية لحمض الأسكوربيك، قمنا باجراء تجربة تفاعل عصير برتقالة الكليمونتين مع أزرق الميثيلين الذي نختصر صيغته الجزيئية ب BM^+ سمحت المتابعة الزمنية للتحول الحادث في درجتي حرارة مختلفتين، $2^\circ C = \theta_1 = 40$ و $\theta_2 = 40$ الحصول على منحنيي تطور $C_6H_8O_6$ تركيز حمض الأسكوربيك بدلالة الزمن t (الشكل.3)

1. أكتب المعادلتين النصفيتين ثم المعادلة الإجمالية لتفاعل أكسدة $\left(Ox/\operatorname{Re}d\right)$ المشاركتين في التفاعل: $\left(BM^+(aq)/BMH(aq)\right)$; $\left(C_6H_6O_6(aq)/C_6H_8O_6(aq)\right)$

- $v_{vol} = -rac{d \ C_6 H_8 O_6}{dt}$: اثبت أن السرعة الحجمية للتفاعل تعطى بالعبارة: 2
 - . $20^{\circ}C$ غند درجة الأعظمية عند درجة 3
 - 4. حدد عاملين حركيين يبرزهما منحنيي الشكل.3، مع التعليل.


يحتوي الموضوع الثاني على 4 صفحات (من الصفحة 05 إلى الصفحة 8)

قررت أستراليا إلغاء عقدها مع فرنسا لبناء غواصات تعمل بالديزل والكهرباء والاستثمار في الغواصات الأميركية التي تعمل بالطاقة النووية ما سبب بدخول البلدين بأزمة دبلوماسية.

يهدف هذا التمرين إلى دراسة غواصتين أحدهما أمريكية تعمل بالطاقة النووية والأخرى فرنسية تعمل بالديزل والكهرباء.

تعمل هذه الغواصات بمفاعل نووي من طراز \$8G استطاعته 220MW يستعمل اليورانيوم المخصب كوقود، حيث يمكن لهذه الغواصة البقاء تحت الماء لمدة 3 أشهر ولا يدفعها للخروج إلى الاضطرار للتزود بالإمدادات الغذائية لطاقمها.

- 1. ما المقصود بالانشطار النووي.
- 2. من بين تفاعلات الانشطار التي تحدث في المفاعل النووي التفاعل التالي:

$$^{235}_{92}U + ^{1}_{0}n \rightarrow ^{94}_{38}Sr + ^{140}_{54}Xe + a^{1}_{0}n$$

- حدد قيمة a مبينا القانون المستعمل. -
- 3. يسمى هذا التفاعل بتفاعل تسلسلي مغذى ذاتيا. اشرح هذه العبارة موضحا إجابتك برسم تخطيطي.
 - $E_{lib} = 2.94 \times 10^{-11} J$ هي أن الطاقة المحررة من انشطار نواة اليورانيوم 235 هي 4.
- 5. بفرض أن كل التفاعلات الحادثة في المفاعل النووي تحرر نفس الطاقة في السؤال (4) والاستطاعة المتوسطة للمفاعل النووي هي 220MW ومردوده %40.
 - أحسب كتلة اليورانيوم الذي يجب أن تحمله الغواصة لتبحر مدة ثلاثة (3) أشهر.

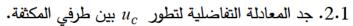
معطيات:

- $1 MeV = 1.6 \times 10^{-13} J$ $1 u = 931.5 MeV / c^2$ طاقة وحدة الكتلة الذرية: -
- $N_A = 6.02 \times 10^{23} \ mol^{-1}$: الكتلة المولية لليورانيوم: $M\left(U\right) = 235 \ g.mol^{-1}$

$\frac{1}{0}n$	¹⁴⁰ ₅₄ Xe	94 38 <i>Sr</i>	$^{235}_{92}U$	النواة
1,0087	139,92252	93,9154	235,0439	الكتلة الذرية (u)

دراسة الغواصة الفرنسية من فئة سكوربين:

1. دراسة مكثفة فائقة السعة:



من أجل التأكد من قيمة سعة مكثفة فائقة $\,C\,$ نشكل دارة كهربائية

على التسلسل تحتوي على: مكثفة فارغة سعتها C ، ناقل أومي قيمة مقاومته $R=2\Omega$ ، مولد مثالي قوته المحركة الكهربائية E=300V ، قاطعة K=0 ، نغلق القاطعة عند K=0 وبواسطة تجهيز خاص تحصلنا على تطورات U_c بين طرفى المكثفة (الشكل.1).

1.1. مثِّل الدارة الكهربائية.

$$u_c \ t = E \left(1 - e^{-rac{t}{ au_1}}
ight)$$
 عادلة التفاضلية السابقة .3.1

استخرج عبارة au_1 بدلالة مميزات الدارة.

4.1. استنتج بیانیا ثابت الزمن
$$\tau_1$$
 ، وتأکد من أن سعة المکثفة تساوی $800F$.

5.1. أحسب الطاقة الأعظمية المخزنة في المكثفة.

2. دراسة عمل الغواصة الفرنسية:

تحتوي الغواصة على 240 مكثفة فائقة السعة المتماثلة سعة كل منها 800F مربوطة بشكل معين بحيث نحصل على مكثفة مكافئة C_{qq} عندما نشحن المكثفة المكافئة بتوتر

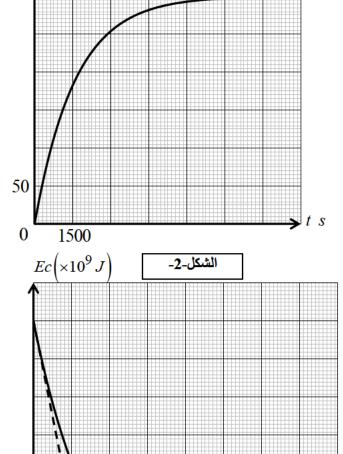
قدره 300V قرنه أعظمية مقدارها $Ec_{
m max} = 8,64 imes 10^9 J$

مع التعليل، ثم استنتج .1.2 حدد نوع ربط المكثفات مع التعليل، ثم استنتج قيمة
$$.C_{\rm eq}$$

$$au_2$$
 حدد ثابت الزمن لدارة التفريغ –

مدة اشتغال الغواصة بعد كل عملية
$$t_a$$
 مدة شحن ثم قارنها مع au_2

2.3.2. أحسب حجم وقود الديزل اللازم لاشتغال


الغواصة لمدة 30 يوم، علما أن مردود محركات الديزل هو 43% والقدرة الحرارية لاحتراق وقود الديزل $38\,Gi.m^{-3}$.

t(h)

التمرين الثاني: (07 نقاط)

تلعب الاحماض الكربوكسيلية والكحولات دورا هاما في كيمياء العطور وفي الصناعة الغذائية على اعتبار أن تفاعلها فيما بينها يؤدي إلى تشكل الأسترات التي تمتلك رائحة مميزة لبعض الأزهار أو الفواكه، كما تجد مكانتها أيضا في الصناعة الصيدلانية بفضل مزاياها العلاجية.

يهدف التمرين إلى التعرف على بعض مميزات الأحماض عن طريق المعايرة الـ pH مترية، وتفاعله مع كحول.

الشكل1_

 $u_c V$

1,08

0

Å,

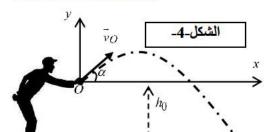
- الجزء الأول:

 $HClO_4$ حضر تقني المختبر محلولين أحدهما S_1 لحمض كربوكسيلي RCOOH والآخر S_2 لحمض بيركلوريك S_3 لحمض بيركلوريك $V_a=10\,m$ ووضع كلا منهما في قارورة، ثم أخذ نفس الحجم S_1 من المحلولين S_2 وعايرهما بواسطة محلول S_3 لهيدروكسيد الصوديوم S_3 S_4 أتركيزه المولي S_4 الميدروكسيد الصوديوم S_4 أن S_4 S_5 الميدروكسيد الصوديوم S_4 أن S_5 الميدروكسيد الصوديوم S_4 الميدروكسيد الصوديوم ومن المحلوم الميدروكسيد الصوديوم ومن المحلوم الميدروكسيد الصوديوم ومن المحلوم الميدروكسيد الميدروكسي

تحصلنا باستعمال جهاز قياس الـ pH على المنحنيين (a) و الممثلين لتغيرات الـ pH بدلالة الحجم (b) الممثلين لتغيرات الـ pH المضاف.الشكل (b) هيدروكسيد الصوديوم المضاف.الشكل (b)

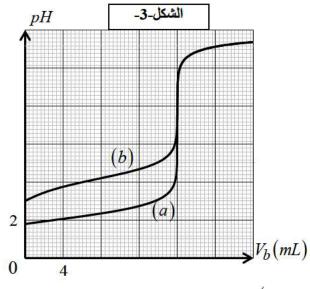
- 1. أعط تعريف الحمض حسب برونشتد.
- 2. أكتب معادلة تفاعل المعايرة بالنسبة للحمض RCOOH.
 - 3. استخرج إحداثيات نقطة التكافؤ لكل منحنى.
- 4. حدد المنحنى الموافق لمعايرة المحلول (S_2) ، وبين أنه حمض قوي.
 - (S_2) و (S_1) و أحسب التركيز المولي لكل من المحلولين .
- $\cdot \left(RCOOH \ | \ RCOO^-\right)$ الشائية pKa المتاتج قيمة ثابت الحموضة .6

- الجزء الثاني:

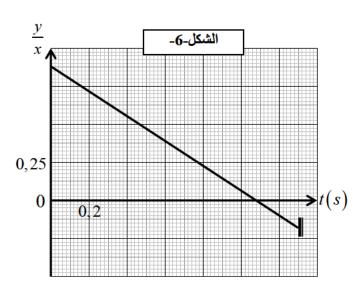

لتصنيع استر انطلاقا من الحمض الكربوكسيلي RCOOH، قام تقني المختبر بتسخين خليط مكون من (C_2H_5OH) ، من الحمض الكربوكسيلي و $n_1=8,2\times 10^{-3}\ mol$ فحصل على الاستر بنزوات الإيثيل $(C_6H_5COOC_2H_5)$.

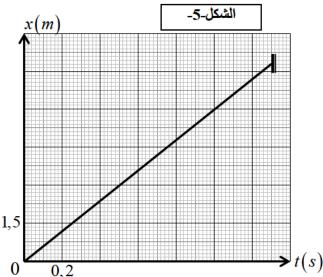
عند نهائية التفاعل قام بتخفيض درجة حرارة الخليط التفاعلي، ثم عاير الحمض الكربوكسيلي RCOOH المتبقي فوجد $n_f = 2.4 \times 10^{-3} \, mol$

- 1. حدد الصيغة نصف المنشورة للحمض الكربوكسيلي RCOOH.
 - 2. حدد كمية مادة الإستر المتكون عند نهاية التفاعل.
 - 3. احسب مردود هذا التصنيع.


التمرين التجريبي: (07 نقاط)

استضافت الجزائر خلال سنة 2023 ألعاب البحر الأبيض المتوسط، والتي كانت من الفرق المشاركة فيها منتخب الجزائر للكرة الحديدية.


يهدف التمرين إلى دراسة حركة كرة حديدية خلال حركتها في الهواء.


يرمي اللاعب الكرة الحديدية (S) من النقطة O الواقعة على ارتفاع \vec{v}_0 فوق سطح الأرض، وبحيث يصنع شعاع السرعة الابتدائية h_0 للكرة زاوية α مع المستوي الأفقي. (يهمل تأثير الهواء) (الشكل.4)

 $\frac{y}{x}$ و الشكل.5)، و $\frac{y}{x}$ و الشكل.5)، و الشكل.5)، و أدام الكرة وباستعمال برمجية مناسبة مكنتنا الحصول على تغيرات x فاصلة الكرة بدلالة الزمن (الشكل.6)

- 1. ذكر بنص المبدأ الأساسي للتحربك.
- 2. ما المقصود بالجملة "يهمل تأثير الهواء".
- Ox,Oy . بتطبيق القانون الثاني لنيوتن على مركز عطالة الكرة في المعلم
- $\cdot y(t)$ و x(t) و المعادلات الزمنية للموضع $v_x(t)$ و $v_x(t)$ و $v_x(t)$ و المعادلات الزمنية الموضع .1.3

$$\frac{y}{x}(t) = -\frac{g}{2.v_0.\cos\alpha} \cdot t + \tan\alpha$$
 : تكتب بالعلاقة التالية تكتب بالعلاقة التالية .2.3

- 4. اعتمادا على الشكل.5 و6، جد قيمة كل من:
- v_O المركبة الأفقية للسرعة v_{Ox} ، ثم قيمة السرعة الابتدائية ،lpha
 - .2.4 في مكان التجربة، والارتفاع h_0 عن سطح الأرض.
 - 3.4. زمن بلوغ الجسم الموضع P، ثم سرعته آنذاك.
 - P و O بين الموضعين O و O .1.5 مثل الحصيلة الطاقوية للجملة (كرة) بين الموضعين
- 2.5. تحقق من قيمة شعاع السرعة \vec{v}_P عند الموضع P، مع المحسوبة سابقا (سؤال 3.4).
 - v_P عند الموضع 3.5. حدد مميزات شعاع السرعة

العلامة		7		
مجموعة	مجزأة	عناصر الإجابة		
	5x0,25	الموضوع الأول (((((((((((((((((((
	3x0,25	$\vec{F}_{S/C}=G.rac{M_S.m}{r^2}$ مع تمثيل القوة في الشكل الأعلى. كالمعبارة الحرفية لشعاع القوة $\vec{F}_{S/C}=G.rac{M_S.m}{r^2}$		
4,75	4x0,25	ورسة حركة مذنب هائي: $F_{S/C}$ $F_{S/C}$ $F_{S/C}$ $F_{S/C}$ $F_{S/C}$ $F_{S/C}$ $F_{S/C}$ $F_{ext} = m.\vec{a} \rightarrow \vec{F}_{S/C} = m.\vec{a}$ $F_{S/C} = m.\vec{a}$ $F_{S/C} = m.\vec{a} \rightarrow G \cdot \frac{M_S \cdot m}{r^2}$ $F_{S/C} = m.\vec{a} \rightarrow G \cdot \frac{M_S \cdot m}{r^2}$ $F_{S/C} = m.\vec{a} \rightarrow G \cdot \frac{M_S \cdot m}{r^2}$ $F_{S/C} = m.\vec{a} \rightarrow G \cdot \frac{M_S \cdot m}{r^2}$ $F_{S/C} = m.\vec{a} \rightarrow G \cdot \frac{M_S \cdot m}{r^2}$		
	0,5	يتناسب مربع الدور لمدار كوكب مع مكعب نصف طول المحور الكبير للمدار مهما كان الكوكب $\frac{T^2}{a^3} = K$ المعتبر		
	3x0,25	3. استخراج عبارة قانون الأدوار: بما المسار دائري والتسارع ناظمي: $a = \frac{v^2}{r} \to v^2 = \frac{GM_S}{r^2} \cdot r = \frac{GM_S}{r} \to T = \frac{2\pi r}{v} \to \frac{T^2}{r^3} = \frac{4\pi^2}{GM_S}$		
	0,5	: المذنب ورق واحدة لمذنب هالي: $T = 2\pi \cdot \sqrt{\frac{\left(2,69\times10^{12}\right)^3}{6,67\times10^{-11}\times2\times10^{30}}} = 2,4\times10^9 s = 76 ans$		

		القيمة تتوافق مع ما ورد في النص.
0,75	0,25	$n=rac{2024-1682}{76}=4,5fois$: تحدید عدد الدورات: 2.4
		5. إثبات أن نصف المحور الكبير للمدار الإهليليجي لمذنب "بوب" أكبر منه لمذنب هالي:
		حسب قانون الأدوار:
	0,5	$\frac{T_C^2}{a_C^3} = \frac{T_B^2}{a_B^3} \to a_B = \sqrt[3]{\left(\frac{T_B}{T_C}\right)^2} \cdot a_C \to a_B = \sqrt[3]{\left(\frac{4000}{76}\right)^2} \cdot a_C = 14 \cdot a_C \to a_B > a_C$
		التمرين الثاني: (07 نقاط)
		- الجزء الأول:
		1. تعریفات: DZPHYSIOUE
	2.0.25	 التاريخ: هو تقنية فيزيائية تهدف إلى تحديد عمر عينة.
	3x0,25	 نظير مشع: هو نواة مشعة لنفس العنصر الكيميائي لها نفس العدد الذري وتختلف في العدد الكتلي،
		تتفكك تلقائيا إلى نواة أكثر استقرارا مع اصدار اشعاعات.
		- <u>آثار في العينة:</u> كتلة العنصر مهملة أمام كتلة العينة. 2. كتابة معادلة تفكك الكربون 14:
		2. حاب معدت تعد اعربون -1 . - بما أنه يحدث تحول نيترون إلى بروتون فإن نمط التفكك هو β^- ، وعليه:
	40.25	به ۱- پیدے کون بیرون ہی برونوں کی برونوں کی برونوں اپنی برونوں ا
03,5	4×0,25	$00 \times Z^{11} \times -10^{-10}$ بتطبيق قانون الانحفاظ لصودي: $Z = 7$ $Z = 4$ وعليه النواة البنت الناتجة:
		${}^{14}_{6}C \rightarrow {}^{14}_{7}N + {}^{0}_{-1}e$
	0,25	$A(t)\!=\!A_0.e^{-\lambda.t}:\!A(t)$ كتابة عبارة قانون تناقص النشاط الإشعاعي . $A(t)\!=\!A_0.e^{-\lambda.t}:\!A(t)$
		2.3. تحديد التاريخ التقريبي لبناء المسجد:
	4×0.25	$t = \frac{t_{1/2}}{\ln 2} \cdot \ln\left(\frac{A_0}{A}\right) = \frac{5730}{\ln 2} \cdot \ln\left(\frac{13,6}{13,13}\right) = 290,73 ans$
	4x0,25	وعليه: $1733,27 = 2024 - 2004$ إذن التاريخ التقريبي 1734 م، وهو متوافق مع ما ورد
		في النص.
		4. تفسير التأريخ كائن حي عمر حوالي مليون سنة:
	0,5	$\Delta t >> 7, 2.t_{1/2} {14 \choose 2}$ لا يمكن تأريخ عينة هذا الكائن البشري لأن

		- الجزء الثاني:
		1. تعريف الاندماج النووي، وكتابة معادلة التفاعل:
	3x0,25	هو تفاعل نووي مفتعل، ناتج عن التحام نواتين خفيفتين لتشكيل نواة أثقل أكثر استقرارا مع تحرير طاقة.
		${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + {}_{0}^{1}n$
		2. تحدید الفیزیائی له (a) و ر (a) وحساب قیمهٔ کل منهما:
		يمثل (a) و (b) الطاقة الكتلية (طاقة كتلة الجسيمات).
	4x0,25	$a = (2.m_p + 3.m_n).c^2 = (2 \times 1,0073 + 3 \times 1,0087).931,5 = 4695,41 MeV$
03,5	470,25	$b = a - \Delta E_1 = \left(a - \left(E_l \begin{pmatrix} 2 \\ 1 \end{pmatrix} + E_l \begin{pmatrix} 3 \\ 1 \end{pmatrix} \right) \right)$
		$= (4695,41 - (1,11 \times 2 + 2,82 \times 3)) = 4684,73 MeV$
	0.5	3. استنتاج الطاقة المحررة من هذا التفاعل مقدرة بالجول (J) :
	0,5	$Elib = -\Delta E_3 = -(4667,00 - 4684,73) = 17,73 MeV = 2,84 \times 10^{-12} J$
		m=2g من أنوية الدوتيريوم $m=2g$ من أنوية الدوتيريوم .4
	3x0,25	$E_T = N.Elib = \frac{m}{M\binom{2}{1}H} \cdot N_A \cdot Elib = \frac{2 \times 6,02 \times 10^{23} \times 2,84 \times 10^{-12}}{2} = 1,7 \times 10^{12} J$
		5. مقارنة مصدر الطاقة الجديد:
	0,5	الطاقة التي يحررها الاندماج أكبر بكثير من طاقة $rac{E_T\left(rac{2}{1}H ight)}{E_T\left(C ight)} = rac{1.7 imes 10^{12}}{390 imes 10^3} = 4.35 imes 10^6$
		المصادر القديمة وبكتلة مستعملة أقل.
		التمرين التجريبي: (07 نقاط)
		 ا. بعض خواص حمض الاسكوربيك:
	0,25	1. تحديد كمية المادة الابتدائية n_0 لحمض الأسكوربيك المستعملة لتحضير المحلول:
	0,20	$n_0 = \frac{m}{M(C_6 H_8 O_6)} = \frac{1.0}{176} = 5.68 \times 10^{-3} mol$
01		2. تعريف الحمض الضعيف حسب برونشتد، وتبيان أن حمض الأسكوربيك هو حمض ضعيف:
01	0,25	هو كل فرد كيميائي قادر على تحرير بروتون H^+ خلال تفاعل كيميائي، يكون تشرده جزئيا في
		الماء.
	2x0,25	$\tau_f = \frac{10^{-pH}}{C_0} = \frac{10^{-2.6}}{5.68 \times 10^{-3}} = 0.022 \approx 2.2\%$
		$C_0 = \frac{5.68 \times 10^{-3}}{50 \times 10^{-3}}$
		الك $000000000000000000000000000000000000$

		و $\left[H_3O^+ ight]_{eq}$ ، وتبيان أن $\left[H_3O^+ ight]_{eq}$ و $\left[H_3O^+ ight]_{eq}$ ، وتبيان أن						
		$: pKa \approx 4,2$						
	0,5	$Ka = \frac{\left[C_3 H_7 O_6^{-1}\right]_{eq} \cdot \left[H_3 O^{+1}\right]_{eq}}{\left[C_3 H_8 O_6\right]_{eq}} = \frac{\left(\left[H_3 O^{+1}\right]_{eq}\right)^2}{C - \left[H_3 O^{+1}\right]_{eq}} = 5,679 \times 10^{-5}$ $pKa = -\log\left(5,679 \times 10^{-5}\right) \approx 4,2$						
		II. حمض الاسكوربيك في برتقالة الكليمونتين:						
		$:n_{f}\left(I_{2} ight)$ ، وكتابة عبارة و $n_{f}\left(I_{2} ight)$ وكتابة عبارة $n_{f}\left(I_{2} ight)$						
		$C_3H_8O_6 + I_2 = C_6H_6O_6 + 2 I^- + 2 H^+$						
		كميات المادة (mol) التقدم الحالة						
	5x0,25	0 n' ₀ n ₁ 0 ابتدائية						
		وسطية x n'_0-x n_1-x x x_f n'_0-x_f n_1-x_f x_f						
		بما أن التفاعل تام و I_2 موجود بوفرة، فإن $C_3H_8O_6$ متفاعل محد، وعليه: $n_f\left(I_2 ight) = C_1V_1 - x_{ ext{max}}$						
		(X () \ 2						
03,25	0,25	2. تبيان أن كمية مادة ثنائي اليود المتبقي تساوي 1,7×10 ⁻⁵ mol عند نقطة التكافؤ يكون المزيج ستوكيومتري، وعليه:						
	3,	والأستاذ بوايان الأساء						
	0,25	$n_f(I_2) = \frac{n_E(S_2O_3^{2-})}{2} = \frac{C_2.V_2}{2} = 1.7 \times 10^{-5} mol$						
		ك ك ك الموجود في برتقالة الكليمونتين، وتحديد عدد البرتقالات اللازمة 3. حساب كتلة حمض الأسكوربيك الموجود في برتقالة الكليمونتين، وتحديد عدد البرتقالات اللازمة						
		لتلبية الاحتياجات اليومية من حمض الاسكوربيك لشخص بالغ:						
	0,25	بما أن $C_3H_8O_6$ متفاعل محد، فإن $x_{\rm max}=x_{\rm max}$ الموجودة في حجم $x_{\rm max}=x_{\rm max}$ وعليه:						
	0,25	$n'_{0} = C_{1}V_{1} - n_{f}(I_{2}) = 4.1 \times 10^{-5} \text{ mol } \rightarrow m'_{0} = n'_{0} \times M = 7.216 \text{ mg}$						
	0,25	$m_0 = \frac{250 \times 7,216}{50} = 36,08 mg$						
	0,25	لحساب عدد البرتقالات الضرورية: $3 \approx 2,77 = \frac{100}{36,08}$ حوالي 3 حبات برتقال.						
		III. دراسة حركية تفاعل الاسكوربيك مع أزرق الميثيلين:						
		1. كتابة المعادلات النصفية ثم المعادلة الإجمالية لتفاعل أكسدة إرجاع الحادث:						

	1	
	3x0,25	$C_3H_8O_6 = C_3H_6O_6 + 2H^+ + 2e^-$
		$BM^{+} + H^{+} + 2e^{-} = BMH$
		$C_3H_8O_6 + BM^+ = BMH + C_3H_6O_6 + H^+$
		2. إثبات عبارة السرعة الحجمية للتفاعل:
	2×0,25	$rac{d\left[C_{6}H_{8}O_{6} ight]}{dt}$ = $-rac{1}{V_{T}}\cdotrac{dx}{dt}$: بالاشتقاق نجد $\left[C_{6}H_{8}O_{6} ight]_{t}=\left[C_{6}H_{8}O_{6} ight]_{t}-rac{x}{V_{T}}$: نعلم أن
02,75		$v_{Vol} = -rac{d\left[C_6H_8O_6 ight]}{dt}$:منه
		$20^{\circ}C$ عساب قيمة السرعة الحجمية للتفاعل الأعظمية عند درجة حرارة:
	0,5	$v_{Vol}\big _{t=0} = -\frac{0 - 22 \times 10^{-5}}{20 - 0} = 1,1 \times 10^{-5} \text{ mol.} L^{-1}.s^{-1}$
		4. تحديد العاملين الحركيين التي يبرزهما منحنيي الشكل.3:
		العوامل الحركية التي يبرزها المنحنيين: تراكيز المتفاعلات وتأثير درجة الحرارة.
	2x0,25	* التركيز المولي: تتناقص سرعة التفاعل بالنسبة للتجربة الأولى والثانية مع مرور الزمن بسبب انخفاض
		تواتر التصادمات الفعالة.
	2x0,25	* درجة الحرارة: سرعة التفاعل للتجربة (2) أكبرها في التجربة (1) بسبب زيادة درجة الحرارة التي أدت
		إلى ارتفاع تواتر التصادمات الفعالة.
		الموضوع الثاني
		التمرين الأول: (06 نقاط) التمرين الأول: (06 نقاط) الما قالفاء قالاً عدة عنفاة "ما الأماد" الما المادة الفاء المادة الما
		ا. دراسته العواصلة الإمريكية من قدة يو إس إس اوهايو: موقع الأستاذ بوزيان زحرياء
	0,25	1. المقصود بالانشطار النووي: هو تفاعل نووي مفتعل، ناتج قذف نواة ثقيلة بنيترون بطيء ينتج عنه
		نواتين أخف أكثر استقرارا، نيترونات وطاقة.
		$oldsymbol{:} a$: تحدید قیمة . $oldsymbol{2}$
01,25		a = 235 + 1 - (94 + 140) = 2 بتطبيق قانون الانحفاظ الكتلي لصودي:
	0.5	3. شرح عبارة تفاعل تسلسلي مغذى ذاتيا: يتم قذف نواة اليورانيوم معنى التياد التي
ı	0,5	مرة واحدة فقط، أما النيترونات الناتجة تقوم بقذف أنوية اليورانيوم
		المتبقية في العينة وتتواصل العملية حتى انتهاء كل أنوية اليورانيوم
		الموجودة في العينة.
		$E_{lib}=2.94{ imes}10^{-11}J$ تبيان أن الطاقة المحررة من انشطار نواة اليورانيوم هي $E_{lib}=2.94{ imes}10^{-11}J$
	0,25	$E_{lib} = \Delta m.c^2 = \left(m \binom{235}{92}U\right) + m \binom{1}{0}n - m \binom{94}{38}Sr - m \binom{140}{54}Xe - 2m \binom{1}{0}n\right) \times 931, 5 = 2,94 \times 10^{-11} J$
	0,25	

		 حساب كتلة اليورانيوم الذي تحمله الغواصة لتبحر لمدة 03 أشهر:
		$P \times \Delta t$ 100 $\cdot P \cdot \Delta t \cdot M \begin{pmatrix} 235 \\ 92 \end{pmatrix} U$
	0,75	$r = \frac{P \times \Delta t}{\frac{m}{M\left(\frac{235}{92}U\right)} \cdot N_A \cdot E_{lib}} \times 100 \rightarrow m = \frac{100 \cdot P \cdot \Delta t \cdot M\left(\frac{235}{92}U\right)}{r \cdot N_A \cdot E_{lib}}$
		$\rightarrow m = \frac{100 \times 220 \times 10^6 \times 3 \times 30 \times 24 \times 3600 \times 235}{40 \times 6,02 \times 10^{23} \times 2,94 \times 10^{-11}} = 56786,22 g \approx 56,8 kg$
		i K دراسة الغواصة الفرنسية من فئة سكوربين:
	0,5	دراسة مكثفة فائقة السعة: u_C U_C الدارة الكهربائية: U_C الدارة الكهربائية: U_C الدارة الكهربائية: U_C الدارة الكهربائية:
		u_R
		يجاد المعادلة التفاضلية لتطور u_{C} بين طرفي المكثفة:
	0,25	$u_R + u_C = E \rightarrow Ri + u_C = E \rightarrow RC \cdot \frac{du_C}{dt} + u_C = E \rightarrow \frac{du_C}{dt} + \frac{u_C}{RC} = \frac{E}{RC}$ بتطبیق قانون جمع التوترات:
		3.1. استخراج عبارة $ au_1$ بدلالة مميزات الدارة:
		باشتقاق عبارة u_C وتعويضها في المعادلة التفاضلية، نجد:
03,5	2x0,25	$\frac{E}{\tau_{1}}e^{-\frac{t}{\tau_{1}}} + \frac{E - E \cdot e^{-\frac{t}{\tau_{1}}}}{RC} = \frac{E}{RC} \to Ee^{-\frac{t}{\tau_{1}}} \cdot \left(\frac{1}{\tau_{1}} - \frac{1}{RC}\right) + \frac{E - E}{RC} = 0 \to \tau_{1} = RC$
		استنتاج قیمة $ au_1$ والتأكد من سعة المكثفة:
	0,25	$ au_1 = 1575s pprox 1600s$: لدينا $u_C(au_1) = 0.63 imes E = 189V$ بالإسقاط على منحنى الشكل $u_C(au_1) = 0.63 imes E$
	0,25	$C = \frac{\tau_1}{R} = \frac{1600}{2} = 800F$ وعليه:
	0,25	$E'_{C}(\max) = \frac{1}{2}CE^2 = 3.6 \times 10^7 J$. حساب الطاقة الأعظمية المخزنة في المكثفة: 5.1
		2. دراسة عمل الغواصة الفرنسية:
	0.25	$: C_{eq}$ قيمة واستنتاج قيمة المكثفات، واستنتاج قيمة المكثفات، واستنتاج قيمة المكثفات، واستنتاج قيمة
	0,25	بما أن $E_C(\max) > E'_C(\max)$ فإن $E_C(\max) > C$ وعليه تم ربط المكثفات على التفرع، وعليه
	0,25	$C_{eq} = 240.C \!=\! 192000F$ فإن سعة المكافئة
		$ au_2$: تحدید ثابت الزمن لدارة التفریغ $ au_2$
	0,25	$rac{ au_2}{2}$ اعتمادا على مماس اللحظة $t=0$ ، نجد: $t=0$

	0,25	$ au_2$ عملية شحن ومقارنتها مع t_d : نجد: $Ec(t_d) = 0.01 imes Ec_{ m max} = 8.64 imes 10^7 J$ نجد:
		$t_d = 65h$
	0,25	$\frac{t_d}{d} = 2.5$ المقارنة:
		$ au_2$
		2.3.2. حساب حجم وقود الديزل اللازم الشتغال الغواصة لمدة 30 يوم:
01,25		 حساب الطاقة الكهربائية المخزنة خلال 30 يوم:
		$Ec(total) = \frac{720 \times 8,64 \times 10^9}{65} = 9,57 \times 10^{10} J$
	0,5	ال
		$r = \frac{Ec(total)}{E_d(total)} \times 100 \rightarrow E_d(total) = 2,22 \times 10^{11} J$
		$2,22\times10^{11}$
		$V = \frac{2,22 \times 10^{11}}{38 \times 10^9} = 5,84 m^3$ حساب حجم الوقود الديزل المستعمل:
		4.2. المقارنة بين الغواصتين:
	0,25	خلال 03 أشهر مدة اشتغال لكل غواصة، الغواصة الأمريكية أحسن من الفرنسية لأن:
		$E_U = 4.27 \times 10^{15} J > E_C = 2.87 \times 10^{11} J$
		ومن جهة أخرى الطاقة المستعملة في الغواصات الأمريكية تستغرق فترة أطول بكثير حتى تنتهي عكس
		الغواصات الفرنسية التي يجب أن تشحن الطاقة من جديد كل $65h$.
		التمرين الثاني: (07 نقاط)
		- الجزء الأول:
	0,25	1. تعریف الحمض حسب برونشتد: هو کل فرد کیمیائي قادر علی تحریر بروتون H^+ خلال تفاعل
	,	كيميائي.
04,25	01	$RCOOH(aq) + HO^{-}(aq) = RCOO^{-}(aq) + H_2O(l)$ كتابة معادلة تفاعل المعايرة: 2.
04,23	01	 استخراج احداثیات نقطة التكافؤ: بالاعتماد على طریقة المماسین نجد:
		$E_a(16mL;7) \; ; \; E_b(16mL;8)$
		4. تحديد المنحنى الموافق لمعايرة المحلول (S_2) ، وتبيان أنه حمض قوي:
	01	$pH_E=7$ المنحنى a يوافق المحلول a وهو حمض قوي لأن a
		(S_2) و (S_1) : حساب التركيز المولي لكل من المحلولين (S_1) و
	01	$C_1 = C_2 = rac{C_b.V_{b,E}}{V_a} = 0.016 mol.L^{-1}$:بما أن $V_{b,E1} = V_{b,E2} = 16 mL$ فإن

		$:\left(RCOOH\ /\ RCOO^{-} ight)$ استنتاج قيمة ثابت الحموضة pKa للثنائية (e
	0,75	$pKa=4,2$:عند نقطة نصف التكافؤ $V_{1/2}=rac{V_{b,E}}{2}=8$ بالإسقاط على منحنى
		- الجزء الثاني:
02,75	0,5	$C_6H_5COOH: RCOOH$ الكربوكسيلي المنشورة للحمض الكربوكسيلي 1
		2. تحديد كمية مادة الإستر المتشكل عند نهاية التفاعل:
	0,75	$n_f(E) = n_1 - n_f(ac) = 5.8 \times 10^{-3} mol$
		ملاحظة: يمكن انجاز جدول تقدم التفاعل وتوظيفه في الإجابة عن السؤال.
	0,75	$r = \frac{n_f(E)}{n_1} \times 100 = 70,73\%$:حساب مردود التصنيع: $n_1 = \frac{n_f(E)}{n_1}$
		موقع الاستاذ بوزيان زكرياء التجريبي: (07 نقاط)
	0.25	1. تذكير بنص المبدأ الأساسي للتحريك:
	0,25	في معلم غاليلي المجموع الشعاعي للقوة المؤثرة على جملة مادية يساوي في كل لحظة جداء كتلتها
		$\sum \overrightarrow{F}_{ext} = m. \overrightarrow{a}$ في شعاع تسارع مركز عطالتها.
	0,25	2. المقصود بـ "يهمل تأثير الهواء": يهمل تأثير احتكاك الهواء ودافعة أرخميدس.
		و $v_y(t)$ و $v_y(t)$ و $v_x(t)$ و المعادلات الزمنية للموضع $x(t)$ و المعادلات الزمنية للموضع و $x(t)$
		y
		- الجملة: الكرة - الجملة: الكرة
02		x x x x x x x x x x
		- بتطبيق القانون الثاني لنيوتن على مركز عطالة الجملة: h_0
		$\sum \vec{F}_{ext} = m.\vec{a} \rightarrow \vec{P} = m.\vec{a} \rightarrow \vec{a} = \vec{g}$
	01	بإسقاط العبارة الشعاعية في المعلم (Ox,Oy) :
		$\begin{cases} a_x = 0 \\ a_y = -g \end{cases} \rightarrow \begin{cases} v_x = v_O \cdot \cos(\alpha) \\ v_y = -g \cdot t + v_O \cdot \sin(\alpha) \end{cases} \rightarrow \begin{cases} x = v_O \cdot \cos(\alpha) \cdot t \\ y = -\frac{1}{2} g \cdot t^2 + v_O \cdot \sin(\alpha) \cdot t \end{cases}$
		$\frac{y}{x}$: تبیان عبارة النسبة $\frac{y}{x}$:
	0,5	$\frac{y}{x} = \frac{-\frac{1}{2}g.t^2 + v_O.\sin(\alpha).t}{v_O.\cos(\alpha).t} = \frac{-\frac{1}{2}g.t^2}{v_O.\cos(\alpha).t} + \frac{+y_O.\sin(\alpha).t}{y_O.\cos(\alpha).t} : \frac{1}{2}g.t^2 + \frac{1}{2}g.$
		$\rightarrow \frac{y}{x} = -\frac{g}{2.v_O.\cos(\alpha)} \cdot t + \tan(\alpha)$

		v_O و v_{Ox} ، $lpha$ و v_{Ox} . تحدید قیمة کل من v_{Ox} ، $lpha$
	0,75	$\frac{y}{x} = -0.81 \times t + 0.875$ (الشكل.6): العبارة البيانية (الشكل.6):
	0,72	x=6.t (الشكل 5): العبارة البيانية (الشكل
		α زاوية القذف $\alpha: \alpha=41,18^\circ: \alpha=41,18^\circ$
		موقع النستاذ بوزيان زكرياء $v_{Ox}=6$ $m.s^{-1}:v_{Ox}$ المركبة الأفقية للسرعة $v_{Ox}=6$
		$v_O = \frac{v_{Ox}}{\cos(\alpha)} \approx 8 m.s^{-1} : v_O$ السرعة الابتدائية *
		h_0 والارتفاع g والارتفاع g
	01	$-\frac{g}{2.v_O.\cos(\alpha)} = -0.81 \rightarrow g = 9.75 m.s^{-2} : g$ الجاذبية الأرضية*
		$\frac{y_p}{x_p}$ = $-0.175 \rightarrow y_p$ = $-0.175 \times 7.8 = -1.365 \rightarrow h_0 = 1.365 m$: $h_0 = 1.365 m$ *
		P. زمن بلوغ الجسم الموضع P ، وسرعته آنذاك:
	0.1	$t_P=1.3s$: P زمن بلوغ الكرة الموضع *
05	01	$v_P = \sqrt{\left(v_{P,x}\right)^2 + \left(v_{P,y}\right)^2} = \sqrt{6^2 + \left(-7,40\right)^2} = 9,53 m.s^{-1} : v_P$ سرعة الكرة *
		5. 1.5. تمثيل الحصيلة الطاقوية للجملة (كرة) بين الموضعين
	01	Ec_{P} Ec_{O} Ec_{O} Ec_{O}
		v_P التحقق من قيمة: v_P :
	0.5	بتطبيق مبدأ انحفاظ الطاقة للجملة السابقة:
	0,5	$Ec_O + W(\vec{P}) = Ec_P \rightarrow v_P = \sqrt{v_O^2 + 2.g.h_0} = 9,52 \text{m.s}^{-1}$
		$ec{v}_P$: السرعة السرعة $ec{v}_P$:
		$v_P = 9.52 m.s^{-1}$ *الموضع P *الطويلة: P
	0,75	\vec{v}_{Ox} و \vec{v}_P الحامل والاتجاه: يحدد بالزاوية eta (بين حامل شعاع السرعة \vec{v}_P
		$\cos(\beta) = \frac{v_{Ox}}{v_P} = 0.63 \rightarrow \beta = 50.9^{\circ}$